
Evaluation of Temperature 
Management Actions at Shasta Dam

Noble Hendrix, QEDA
Evan Sawyer, NMFS CCVO

22 October 2020

QEDα



Background

• Warmer April and May temperatures lead to later 
spawn timing
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unpublished data, see “Notes”). Over these years, 
80% of winter-run redds were identified within 
10 km of Keswick Dam, and an additional 14% 
were located between 10 and 20 km of Keswick 
Dam, indicating that water temperature below 
Keswick Dam may affect a large percentage of 
winter-run Chinook spawners. 

Model Parameters, Performance, and 
Predictions
The POLR model using both April and May 
temperatures as cofactors had the best fit to 
observed female spawner data based on AIC 
score (Table 3). Table 4 provides the POLR model 

parameters for the April & May model: `Apr (April 
temperature coefficient), `May (May temperature 
coefficient), and nine boundary-specific intercept 
parameters, _j. Simulations of predicted spawn 
timing under cool (April: 9.5 °C; May: 9.8 °C), 
average (April: 10.2 °C; May: 10.5 °C) and warm 
(April: 10.9 °C; May: 11.3 °C) temperatures 
(standardized temperature values of −1, 0 and 
1, respectively) highlight differences in model 
predictions under alternative thermal conditions 
(Figure 3). These simulations show a shift in 
the peak of spawn timing to earlier dates under 
cool temperatures and later dates under warm 
temperatures. 

Figure 4 shows the annual observed female 
spawner proportions by period along with model 
predictions. In general, the model captured the 
peak spawning period in most years. When the 
model mis-predicted the period of peak spawning, 
it was within one period of the observed peak 
spawning (Figure 4). Furthermore, the POLR 
model captured the general patterns in spawning 
distribution, with the exception of 2012, where 
the model was shifted approximately one period 

Table 3 Model selection criteria for the four evaluated 
models: null model (no temperature covariates), April 
temperature covariate model, May temperature covariate 
model, and April & May temperature covariate model. Delta 
AIC values compare each of the four models to the April & 
May model, which best fit the data.

Model AIC 6 AIC # of Parameters

Null Model 65750 505 9

April 65427 182 10

May 65259 14 10

April & May 65245 0 11

Table 4 Coefficients of the proportional-odds logistic 
regression (POLR) model that includes the effects of April 
and May temperatures on spawn timing (April & May model). 
Coefficients are in logit space. 

Parameter mean SE t value

`Apr 0.08 0.02 3.92

`May 0.34 0.02 13.50

_14|15 − 4.00 0.05 − 73.30

_15|16 − 3.19 0.04 − 84.18

_16|17 − 2.50 0.03 − 87.40

_17|18 − 1.58 0.02 − 74.70

_18|19 − 0.73 0.02 − 41.25

_19|20 0.24 0.02 14.13

_20|21 1.40 0.02 67.52

_21|22 2.65 0.03 81.29

_22|23 4.34 0.07 61.01

Figure 3 Model predictions of proportion spawning for 
warm, average, and cool conditions, showing mean prediction 
(solid line) and 95% confidence intervals (shading) based on 
standard errors around model parameters. Cool, average and 
warm conditions are defined as springtime temperatures of: 
April = 9.5 °C, May = 9.8 °C (cool); April = 10.2 °C, May = 10.5 °C 
(average); and April = 10.9 °C, May = 11.3 °C (warm). 



Exposure to thermal conditions given 
spawn timing

• In hot, dry conditions (e.g., 2014) , later 
spawning can lead to greater exposureSAN FRANCISCO ESTUARY & WATERSHED SCIENCE
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egg and alevin incubation timing (Equation 3) 
to calculate winter-run spawn timing and egg 
incubation under average temperatures in the 
McCloud River, a historic winter-run spawning 
location, and at the current spawning location 
below Keswick Dam. Monthly mean water 
temperature in the spring-fed McCloud River is 
low in April, peaks in July, and then decreases 
again through November (Figure 6). In contrast, 

the monthly mean temperature below Keswick 
Dam rises steadily from April through November. 
Under constant average monthly temperatures in 
both locations, model predictions show a higher 
proportion of early spawning in the McCloud 
River, with peak spawning occurring about 10 
days earlier than below Keswick Dam (p17 – p20 
for McCloud average conditions, compared 
to p18 – p21 for Keswick average conditions; 
Figure 7). Average temperatures in the two 
locations are similar from June through August, 
resulting in near-identical predicted emergence 
dates for eggs deposited between May 11 and 
July 9 (p14 – p19), which is 56% of Keswick and 
73% of the McCloud spawning distribution. As 
temperatures in the McCloud River begin to 
drop in September, the predicted embryonic and 
larval development times are longer for p20 – p23, 
shifting emergence into November for eggs 
fertilized during p22 and p23. 

Figure 5 Cumulative spawn timing (solid line) and calculated 
egg incubation to emergence (dotted line) for example years 
with cool (2008) vs. warm (2014) April-May water temperatures 
below Keswick Dam. Individual points correspond to 
cumulative proportion of fish spawning during each 10-day 
period from p14 – p23 (labeled on the x-axis at day 5 of 
each 10-day period), and thickness of the solid horizontal 
lines shows the relative amount of spawning activity/egg 
deposition during each period. Daily water temperature below 
Keswick Dam is displayed in the top half of each plot, with the 
secondary y-axis providing the temperature scale. The dashed 
horizontal gray line indicates a temperature of 12.5°C. 

Figure 6 Monthly mean temperature on the McCloud 
River (41.0944°N, −122.1134°W, elevation 628 m) and on the 
Sacramento River below Keswick Dam from 2000–2016. Error 
bars show 95% confidence intervals around the monthly 
means. In most years, McCloud River daily data collection 
began in the second half of April, resulting in a potential 
upward bias in McCloud mean temperature for April.
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egg and alevin incubation timing (Equation 3) 
to calculate winter-run spawn timing and egg 
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Reintroduction 
Model
Objectives:
• Link reintroduction to 

appropriate life cycle 
stages in the existing 
life-cycle model

• Develop estimates of 
fish passage collection 
efficiency and survival 
for inclusion in the life 
cycle model

• Determine whether 
the reintroduction can 
lead to a sustainable 
population
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Dynamic reintroduction in severe 
critical year (1977)

• Spawners return to 
Keswick

• Allotted to 
populations based 
on capacity

• Hatchery fish taken 
from remaining 
Keswick spawners

Spawners at 
Keswick

Keswick McCloud Up Sac

~94% ~5% ~1%

Hatchery



Developing hydrologic traces 

• We want to evaluate management actions 
over multiple hydrologic conditions
– Incorporates hydrologic variability rather than a 

single observed realization 
– Provides a more robust evaluation of the actions

• We developed a set of 100 hydrologic traces, 
each 100 years in length, that are consistent 
with historical hydrology 



Source:environmentalbrigade.wordpress.comvariety of plausible flow scenarios. However, the magni-
tudes of reconstructed streamflow have a high degree of
uncertainty. Typically, a regression model is fit to the
observed streamflow with a suite of tree ring observations
as the predictors. This fitted model is then used to estimate
streamflows in the preobservational period using the tree
ring observations [Meko et al., 1995]. The reconstructed
streamflows can be sensitive to the choice of model as
demonstrated by Hidalgo et al. [2000]. This apparent
weakness of the paleoreconstructed flow data has made
their use in a water resources planning context contentious,
despite the availability of paleoreconstructed data for
many decades. In spite of these apparent weaknesses, few
argue about the duration and frequency of dry and wet (i.e.,
the hydrologic state) periods from the reconstructions
[Woodhouse et al., 2006]. The key question is how to
combine the long paleoreconstructed streamflow informa-
tion of lower reliability with the shorter but reliable obser-
vational data to develop a framework for simulation of
streamflow scenarios.
[4] To address this question, we propose a new two-step

process in which the hydrologic state (i.e., wet or dry) is
modeled using the paleoreconstruction data and the flow
magnitudes derived from the observational data. Specifically,
a nonhomogeneous Markov chain model [Rajagopalan et
al., 1996, 1997] is built on the paleodata that is then used to
simulate the hydrologic state. The flow magnitudes are then
generated conditioned on the simulated hydrologic state
using a K-nearest neighbor (K-NN) conditional time series
bootstrap [Lall and Sharma, 1996], thereby using the
strengths of both of these data sets. The data sets used,
the proposed framework, and the application to the Lees
Ferry, Arizona, stream gauge on the Colorado River are
described in the following sections.

2. Data Sets

[5] As mentioned earlier, two data sets, paleorecon-
structed streamflow and observed flows, are used in this
study. These are described below.

2.1. Natural Streamflow

[6] The natural streamflow data for the Colorado River
basin are developed by the Bureau of Reclamation (Recla-
mation) and updated regularly. Annual updates addressing
data changes and additions are typical. Naturalized stream-
flows are computed by removing anthropogenic impacts
(i.e., reservoir regulation, consumptive water use, etc.) from

the recorded historic flows. Prairie and Callejo [2005]
present a detailed description of methods and data used
for the computation of natural flows in the Colorado River
basin. This study uses the annual water year (September–
October) natural streamflow at Lees Ferry, Arizona, for the
period 1906–2005.

2.2. Paleoreconstructed Streamflow

[7] This study also uses the annual water year streamflow
reconstructions from tree ring information at the Lees Ferry,
Arizona, gauge, completed by Woodhouse et al. [2006] for
the period 1490–1997. Tree ring widths are influenced by
climate and available soil moisture and thus are good
integrators of the weather fluctuations, just as streamflow
is a watershed integration of hydrologic and climatologic
processes. Consequently, the tree ring widths are well
correlated with annual runoff. To gather ring width data, a
series of trees are cored at multiple locations, chosen such
that the tree species have annual rings sensitive to moisture
availability. Selecting the species and the location is very
important for this effort [Meko et al., 1995]. Two core
samples are taken from each tree for cross dating, and the
ring widths are measured, obtaining the chronology of tree
ring widths. The attractive aspect of tree-ring-based recon-
structions, unlike other paleoproxy data, is that trees that put
on annual rings have natural dating, with the outer ring
corresponding to the current year and the subsequent inner
rings corresponding to past years. A standard series of
techniques [Stokes and Smiley, 1968; Swetnam et al.,
1985] are employed to process the ring width series.
Typically, the series is first detrended to remove the effects
of reduced ring width with aging. Next, the ring width series
from various cores at a single location are combined to
develop a ‘‘site chronology’’ [Cook et al., 1990]. The site
chronology is related to observed streamflow during the
overlap period; typically, a multiple linear regression model
is fit [Weisberg, 1985]. For the Colorado River at the Lees
Ferry, Arizona, gauge, the regression model developed by
Woodhouse et al. [2006], using all the available pool of
chronologies (30 in total), explains approximately 84% of
the annual variance of the observed streamflow. The fitted
regression model is then used to estimate the streamflow
during the preobservation period when tree ring information
is available, thus obtaining the reconstructed streamflow
series.
[8] Especially during high streamflow periods it is known

that the tree ring widths are influenced by variables other

Figure 1. Five-year running means of historic and paleoreconstructed streamflow at Lees Ferry.
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Relate paleorecord to streamflow
(Meko et al. 1995)

Source: DWR

Meko, D., C. W. Stockton, and W. R. Boggess (1995), The tree-ring record of severe sustained 
drought, Water Resour. Bull., 31(5), 789–801. 



natural flows (1906–2005) at Lees Ferry, Arizona, on the
Colorado River. For this work, 500 simulations, each 100
years in length (same as the length of the observed flows),
were generated.
[26] A suite of basic distributional statistics are computed

including the annual (1) mean, (2) standard deviation,
(3) coefficient of skew, (4) maximum, (5) minimum, and
(6) lag-1 autocorrelation. Surplus and drought statistics
include the average length surplus (avgLS), average length
drought (avgLD), average surplus (avgS), and deficit
(avgD) volume. Surplus (drought) is defined as values
above (below) a threshold, here the median of the observed
record. Figure 5 describes the computation of these surplus
and drought statistics based on the threshold.
[27] The results are displayed as box plots where the box

represents the interquartile range (IQR) and whiskers extend
to the 5th and 95th percentiles of the simulations and
outliers are shown as points beyond the whiskers. The
statistics of the observed record are represented as a
triangle, and the statistics of the paleoreconstructed record
are represented as a circle. Performance on a given statistic
is judged as good when the observed or paleostatistic,
depending on the statistic of interest, falls within the
interquartile range of the box plots, while increased vari-
ability is indicated by a wider box plot.

5. Results

[28] First the four sets of time-varying transition proba-
bilities estimated from the NHM estimator (equations, (2),
(3), and (4)) over the paleoperiod are shown in Figure 6.
The optimal bandwidth minimizing the LSCV was found to
be 37 years for the wet-wet transition and 19 for the dry-dry
transition. The other two transition probabilities are comple-
ments of these. The epochal behavior in the transition
probabilities is quite apparent. We draw attention to two
epochs, (1) the early 1900s when the probability of transi-
tion to a wet state is higher than 0.5 and the transition to dry
state is much lower than 0.5, which is also the epoch when
the water sharing compact agreements on the Colorado
River basin were developed, the wettest epoch in the past

500 years. In contrast, (2) the early 1600s is when the
probability of transition to a dry state is much higher than
0.5, which is one of the driest periods in the paleorecord.
There is also a steady decline in the probability of transition
to a wet state in recent decades and a corresponding increase
to dry states. Thus using these varied transition probabilities
will provide a richer variety of wet and dry sequences, as
seen in the results that follow.
[29] The simulations capture the basic distributional sta-

tistics of the observed streamflow within the IQR (Figure 7).
This is consistent with the methodology in that the K-NN
bootstrap approach resamples the observed data. Since the
generated sequences are of the same length as the observed,
the basic statistics of the observed streamflows are well
captured, as to be expected. These distributional statistics of
the paleorecord are not expected to be captured.
[30] Box plots of surplus and drought statistics are shown

in Figure 8, along with the corresponding values from the
observed record represented as a triangle and those from the
paleorecord represented as a circle. The simulations from
NPC generate longer drought and surplus sequences relative
to observed, which can be seen by the observed statistics

Figure 5. Definition of surplus and drought statistics.

Figure 6. Transition probabilities from the paleostream-
flows using the nonhomogeneous Markov estimator.
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Model transitions between wet and 
dry states

than moisture availability, thus degrading their ability in
accurately representing high flow years. Further, different
data sets and techniques to process tree ring information can
result in substantial differences in the reconstructed flows
[Hidalgo et al., 2000]. This can be seen in Figure 2, where
four different streamflow reconstructions at the Lees Ferry,
Arizona, gauge are shown, including the earliest reconstruc-
tion of Stockton and Jacoby [1976], later reconstructions by
Hidalgo et al. [2000], that of Hirschboeck and Meko [2005]
as part of the Salt River Project, and the most recent
reconstruction by Woodhouse et al. [2006]. Each recon-

struction used a different set of tree ring chronologies and
different processing methods. Of particular interest is the
increased severity of drought and reduced overall mean
displayed by the Hidalgo reconstruction. Unfortunately, the
variability across reconstructions has not helped instill
confidence in use of these data by policy makers and water
managers in the Colorado River basin, even with growing
interest in wanting to use them. Despite their differences,
reconstructions tend to agree quite well on ‘‘wet’’ and
‘‘dry’’ years [Woodhouse et al., 2006], as seen in Figure 3.
We found that three or more reconstructions agree on the

Figure 2. Five-year running means of recent and previous streamflow reconstructions at Lees Ferry.

Figure 3. System state, i.e., wet (1) or dry (0), derived from 5-year running means for recent and
previous streamflow reconstructions at Lees Ferry.
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Wet = above 
median flow

Dry = below 
median flow



Selecting Years from the Observation Period 
(Prarie et al. 2008)

• Use a bootstrap 
resampling 
approach with 
replacement

• Given the transition 
(e.g., wet -> dry), 
select years that are 
closer in time 

Prairie, J., K. Nowak, B. Rajagopalan, U. Lall, and T. Fulp (2008), A stochastic nonparametric 
approach for streamflow generation combining observational and paleoreconstructed data, 
Water Resour. Res., 44

hydrologic state 88% of the time, while all four methods
agree 65% of the time on an annual basis. This offers the
potential to use the paleoreconstructed streamflows to model
the hydrologic state (i.e., wet or dry) of the system and use the
observational data for the flow magnitude. This forms the
basis of our proposed framework.

3. Proposed Framework

[9] As mentioned above, the proposed framework com-
bines the paleoreconstructed streamflows with the observa-
tional data in a framework for simulating robust streamflow
scenarios for use in water resources management. The
paleoreconstructed data are used to model the hydrologic
state of the system. The median of the observed flows is
used to define periods as wet if flow is greater than this
threshold and dry if flow is less than this threshold. Epochs
of wet and dry periods identified using this criterion are
illustrated in Figures 2 and 3. They illustrate the persistence
in wet/dry regimes that suggests a Markov chain based
model. Because the state transition appears to be varying
through time, a nonhomogeneous Markov chain modeling
approach is appropriate. The streamflow magnitudes are
then simulated from the conditional probability density
function, given the wet or dry state using a nonparametric
K-nearest neighbor bootstrap approach. The framework is
shown in Figure 4. The description of these two compo-
nents of the framework along with background information
are provided below. Hereinafter we refer to this framework
as nonparametric paleoconditioning (NPC).

3.1. Modeling the Hydrologic State

[10] Markov chains have been extensively used to model
daily precipitation occurrence [Gabriel and Neumann,
1962; Todorovic and Woolhiser, 1975; Smith and Schreiber,
1974; Salas, 1993, and references within]. Typically, for a
two-state (wet, dry) first-order model (i.e., state transition at
the current time step depends on the previous state), the
transition probabilities are directly estimated from the data

by counting the proportion of transitions to a wet year from
a dry year, Pdw, and the probability of a wet year followed
by a dry year, Pwd. The probability of a dry year followed
by a dry year can be obtained as Pdd = 1 ! Pdw; likewise,
the probability of a wet year followed by a wet year can be
obtained as Pww = 1 ! Pwd. The transition probabilities can
be readily used to simulate the hydrologic states and
consequently, their frequencies. If these transition probabil-
ities are assumed to be stationary and calculated from the
entire data, then it is a ‘‘stationary’’ Markov chain. Here,
though (Figures 2 and 3), the frequencies of wet and dry
periods are varying (i.e., nonstationary) over time.
[11] The nonstationarity can be addressed in several

ways. A moving window of some W time steps can be
selected and the transition probabilities can be estimated for
each time window and repeated by moving forward every
time step. The transition probability estimates for each year
are based on state observations present in the window
length. An alternative, hidden Markov models, has been
gaining popularity. In these, the underlying epochal (or
regime) changes are modeled probabilistically and the
transition probabilities are then conditionally estimated
based on the epoch. These models have been applied
to precipitation, climate, and streamflow data [see, e.g.,
Zucchini and Guttorp, 1991; MacDonald and Zucchini,
1997; Lu and Berliner, 1999; Thyer and Kuczera, 2000,
2003a, 2003b; Ak!ntuğ and Rasmussen, 2005]. Another
approach to dealing with nonstationarity is the nonhomo-
geneous Markov models [Hughes and Guttorp, 1994;
Hughes et al., 1999; Bellone et al., 2000; Lambert et al.,
2003]. For example, Fourier series were fit to model the
changing transition probability with season for precipitation
[Woolhiser and Pegram, 1979; Roldan and Woolhiser,
1982; Feyerherm and Bark, 1965].
[12] Nonparametric alternatives [e.g., Rajagopalan et

al., 1996, 1997; Mehrotra et al., 2004; Mehrotra and
Sharma, 2005] offer a more general and flexible approach.
In particular, here we use the nonhomogeneous Markov
model (NHM) developed by Rajagopalan et al. [1996], in
which the transition probability at any time t is estimated
as a weighted average of the transitions within a window
of size H centered on t. The window size H is obtained
from objective criteria. This was developed to model a
daily precipitation process and subsequently applied for
modeling the occurrence of El Niño–Southern Oscillation
[Rajagopalan et al., 1997]. We adapt the NHM framework
for modeling the streamflow states described below.
[13] The transition probabilities, Pdw (t) and Pwd (t), for a

given year are estimated by a discrete nonparametric kernel
estimator given as

Pdw tð Þ ¼

P

n

i¼2

K
t ! ti
hdw

! "

St 1! St!1½ &

P

n

i¼2

K
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! "
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Pwd tð Þ ¼

P
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K
t ! ti
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P
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! "
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Figure 4. The nonparametric paleoconditioning (NPC)
modeling framework description.
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Simulating hydrologic traces for the 
Sacramento River

• Two-state non-
homogeneous 
Markov transition 
matrix for wet/dry 
years from 900-
2012 4-Rivers index

• Hydrologic 
resampling for 
selecting specific 
years from 1970 –
2014

• Performed by 
Lynker

 NOAA NMFS 
DRAFT Development of Synthetic Hydrologic Records 

September 30, 2019 
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Figure 4-5: Empirical CDF of Drought Events for the Selected Dry Traces  

 

 

  



What are some management actions 
to reduce thermal mortality below 

Keswick? Development of hydrologic traces from historical data APPROACH

Table 1: Management actions explored in this analysis and their definitions. Actions include modification of
Shasta temperature releases only, and modification of releases in combination with reintroduction.

Action Definition
Action 1 -1 C in July -1 C in August with +1 C in June and Sept for all years
Action 2 Action 1 but just in Critical years
Action 3 -1 C in April +1.5 C in September for all years
Action 4 Action 3 but just in Critical years
Action 5 Action 3 in all but Critical years
Action 1R -1 C in July -1 C in August with +1 C in June and Sept for all years with reintroduction
Action 2R Action 1 but just in Critical years with reintroduction
Action 3R -1 C in April +1.5 C in September for all years with reintroduction
Action 4R Action 3 but just in Critical years with reintroduction
Action 5R Action 3 in all but Critical years with reintroduction

Development of hydrologic traces from historical data

Synthetic hydrologic records can be developed by resampling water year types. The current implementation
of the WRLCM was calibrated using hydrologic conditions from 1970 – 2014. During this period, multiple
water year types were observed. Linker and Associates were tasked with resampling the historical period
from 1970 to 2014 with replacement to construct a longer time series of hydrology for comparing temperature
management strategies. Linker completed this task and provided 100 traces (realizations) from their historical
hydrology model. Each trace consists of a vector of length 100, with each element of the vector corresponding
to a year between 1970 and 2014. The 100 traces represent a resampling of historical conditions, and provide
a set of hydrologic simulations that are consistent with climate conditions from 1970-2014.

Approach

Temperature management actions

Our goal is to use these resampled years to conduct an analysis of several alternative temperature management
actions (Table 1), both with and without reintroduction. We used the hydrologic traces to evaluate management
actions that modify the monthly temperatures at Keswick dam, which can a�ect both the timing of spawning
and the survival from egg to fry of winter-run Chinook salmon.

Pseudocode for implementing management actions

We used a life cycle model, the winter-run life cycle model (WRLCM) developed by NMFS Southwest Fisheries
Science Center (Hendrix et al. 2014) to evaluate the temperature management actions. We use a version of
the WRLCM that includes a single set of parameter values that were obtained from calibrating the WRLCM
to historical data on escapement and juvenile abundance. This version of the WRLCM was developed for
use in the Roc On LTO Biological Opinion. Additional model descriptions can be found in the supporting
documentation of that document.

Incorporating reintroduction into the management actions

Five additional temperature management alternatives were developed that included reintroduction (Table 1).
Initial evaluations of reintroduction e�orts found that reintroducing fish above Shasta dam in all years could
negatively impact the population abundance. The negative impacts occurred due to years in which there was
low or no thermal mortality associated with fish spawning below Keswick dam. In those years, there was a
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Preliminary Results 
Baseline

Management actions compared to baseline SUMMARY
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Figure 1: Baseline model runs across hydrologic traces. Median (dark line) and 95% intervals (dotted line) in
addition to three example model runs for traces 1-3 (colored lines).

Management actions compared to baseline
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Results - Actions 1 thru 5 

Management actions compared to baseline SUMMARY

Table 3: Results of management actions (Actions 1-5) relative to the baseline run. The mean percent
di�erence in abundance (Mean) and the probability that the abundance in model year 75 is greater than the
baseline (Pr(Action > Baseline)).

Action Mean Pr(Action > Baseline)
1 0.274 % 0.74
2 0.274 % 0.74
3 -20.2 % 0.00
4 -4.46 % 0.00
5 -16.5% 0.00
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Figure 2: Action 1 abundance relative to Baseline (Action - Baseline)/Baseline x 100%. Median (line) and
95% intervals (dotted line) for model years 1 to 75.
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Preliminary Results Actions 1&2
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Preliminary Results, Actions 3&4 
-1C Apr + 1.5C Sept
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Results – Actions with Reintroduction

Temperature Actions with reintroduction BIBLIOGRAPHY

Table 4: Results of management actions with reintroduction. Reintroduction baseline and actions (1-5)
relative to the baseline run. The mean percent di�erence in abundance (Mean) and the probability that the
abundance in model year 75 is greater than the baseline (Pr(Action > Baseline)).

Action Mean Prob.Action
Reintroduction 0.722 % 0.76

1 1.18 % 0.76
2 1.18 % 0.76
3 -19.5 % 0.02
4 -3.69 % 0.05
5 -16.5 % 0.04

Temperature Actions with reintroduction

Reintroduction

The reintroduction action increased population abundance over the baseline (Figure 7, Table 4). The e�ect of
the reintroduction tended to be greater at low population abundance (Figure 7). The reintroduction occurs
only when the 1977 Critical year was sampled in the hydrologic trace. This was the year with the most
severe thermal mortality in the historical record. The reintroduction places a portion of the population above
Shasta Dam which can have positive e�ects, particularly when the population is at low abundance.

Actions 1 and 2 with reintroduction

Given the positive e�ects of the reintroduction and the positive e�ects of Actions 1 and 2, their combination
also provided positive e�ects relative to the baseline (Table 4). The reintroduction and Actions 1 and 2 were
synergistic in that the overall abundance benefits were higher than the simple addition of the two actions
independently (Figure 8, Figure 9, Table 4). The benefits of Actions 1 and 2 are occurring in the Critical
years, with reintroduction occurring in the most severe Critical year. Thus, Action 1 and 2 and reintroduction
could be focused just on these year types, whereas in other year types (Dry, Below Normal, etc.) temperature
management could be less prescriptive.

Actions 3 thru 5 with reintroduction

Reintroduction muted magnitude of the negative impacts of Action 3 (Figure 10) and Action 4 (Figure 11),
whereas the magnitude was equivalent for Action 5 (Table 4). The reintroduction did a�ect the certainty of
the negative e�ect; a few traces had positive abundances relative to Baseline with the reintroduction relative
to without the baseline (Table 3, Table 4).

Bibliography

Hendrix et al. 2014. Life cycle modeling framework for Sacramento River winter-run Chinook salmon. NOAA
Technical Memorandum NMFS Southwest Fisheries Science Center. NOAA-TM-NMFS-SWFSC-530.

Dusek Jennings, E. and Hendrix, A. N. 2020. Spawn Timing of Winter-Run Chinook Salmon in the Upper
Sacramento River. San Francisco Estuary and Watershed Science, 18(2).
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Dynamic Reintroduction
Reintroduction implemented in strong Critical (1977) 
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Preliminary Results 
-1C Jul,Aug, +1C Jun,Sep & Reintro
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Preliminary Results 
-1C Apr + 1.5C Sept & Reintro
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Discussion Topics

• Is a 1C June for 1C August trade a reasonable 
assumption, what about 1C April for 1.5C 
Sept?

• What other temperature management actions 
seem interesting to evaluate?

• Hydrologic traces reflect historical hydrology –
how can we update this analysis to reflect 
climate change?



What will the future hold?

• Future precipitation deficits are more likely to 
be coupled with warm conditions that 
produce drought

Anthropogenic warming has increased drought risk
in California
Noah S. Diffenbaugha,b,1, Daniel L. Swaina, and Danielle Toumaa

aDepartment of Environmental Earth System Science and bWoods Institute for the Environment, Stanford University, Stanford, CA 94305

Edited by Jane Lubchenco, Oregon State University, Corvallis, OR, and approved January 30, 2015 (received for review November 22, 2014)

California is currently in the midst of a record-setting drought. The
drought began in 2012 and now includes the lowest calendar-year
and 12-mo precipitation, the highest annual temperature, and the
most extreme drought indicators on record. The extremely warm
and dry conditions have led to acute water shortages, ground-
water overdraft, critically low streamflow, and enhanced wildfire
risk. Analyzing historical climate observations from California, we
find that precipitation deficits in California were more than twice
as likely to yield drought years if they occurred when conditions
were warm. We find that although there has not been a sub-
stantial change in the probability of either negative or moderately
negative precipitation anomalies in recent decades, the occur-
rence of drought years has been greater in the past two decades
than in the preceding century. In addition, the probability that
precipitation deficits co-occur with warm conditions and the
probability that precipitation deficits produce drought have both
increased. Climate model experiments with and without anthro-
pogenic forcings reveal that human activities have increased the
probability that dry precipitation years are also warm. Further, a
large ensemble of climate model realizations reveals that addi-
tional global warming over the next few decades is very likely to
create ∼100% probability that any annual-scale dry period is also
extremely warm. We therefore conclude that anthropogenic warm-
ing is increasing the probability of co-occurring warm–dry condi-
tions like those that have created the acute human and ecosystem
impacts associated with the “exceptional” 2012–2014 drought
in California.

drought | climate extremes | climate change detection | event attribution |
CMIP5

The state of California is the largest contributor to the eco-
nomic and agricultural activity of the United States, account-

ing for a greater share of population (12%) (1), gross domestic
product (12%) (2), and cash farm receipts (11%) (3) than any
other state. California also includes a diverse array of marine and
terrestrial ecosystems that span a wide range of climatic toler-
ances and together encompass a global biodiversity “hotspot” (4).
These human and natural systems face a complex web of com-
peting demands for freshwater (5). The state’s agricultural sector
accounts for 77% of California water use (5), and hydroelectric
power provides more than 9% of the state’s electricity (6). Be-
cause the majority of California’s precipitation occurs far from its
urban centers and primary agricultural zones, California main-
tains a vast and complex water management, storage, and distri-
bution/conveyance infrastructure that has been the focus of nearly
constant legislative, legal, and political battles (5). As a result,
many riverine ecosystems depend on mandated “environmental
flows” released by upstream dams, which become a point of con-
tention during critically dry periods (5).
California is currently in the midst of a multiyear drought (7).

The event encompasses the lowest calendar-year and 12-mo
precipitation on record (8), and almost every month between
December 2011 and September 2014 exhibited multiple indica-
tors of drought (Fig. S1). The proximal cause of the precipitation
deficits was the recurring poleward deflection of the cool-season
storm track by a region of persistently high atmospheric pressure,

which steered Pacific storms away from California over consec-
utive seasons (8–11). Although the extremely persistent high
pressure is at least a century-scale occurrence (8), anthropogenic
global warming has very likely increased the probability of such
conditions (8, 9).
Despite insights into the causes and historical context of pre-

cipitation deficits (8–11), the influence of historical temperature
changes on the probability of individual droughts has—until re-
cently—received less attention (12–14). Although precipitation
deficits are a prerequisite for the moisture deficits that constitute
“drought” (by any definition) (15), elevated temperatures can
greatly amplify evaporative demand, thereby increasing overall
drought intensity and impact (16, 17). Temperature is especially
important in California, where water storage and distribution
systems are critically dependent on winter/spring snowpack, and
excess demand is typically met by groundwater withdrawal (18–
20). The impacts of runoff and soil moisture deficits associated
with warm temperatures can be acute, including enhanced wildfire
risk (21), land subsidence from excessive groundwater withdrawals
(22), decreased hydropower production (23), and damage to
habitat of vulnerable riparian species (24).
Recent work suggests that the aggregate combination of ex-

tremely high temperatures and very low precipitation during the
2012–2014 event is the most severe in over a millennium (12).
Given the known influence of temperature on drought, the fact
that the 2012–2014 record drought severity has co-occurred with
record statewide warmth (7) raises the question of whether long-
term warming has altered the probability that precipitation deficits
yield extreme drought in California.

Significance

California ranks first in the United States in population, eco-
nomic activity, and agricultural value. The state is currently
experiencing a record-setting drought, which has led to acute
water shortages, groundwater overdraft, critically low stream-
flow, and enhanced wildfire risk. Our analyses show that Cal-
ifornia has historically been more likely to experience drought if
precipitation deficits co-occur with warm conditions and that
such confluences have increased in recent decades, leading to
increases in the fraction of low-precipitation years that yield
drought. In addition, we find that human emissions have in-
creased the probability that low-precipitation years are also
warm, suggesting that anthropogenic warming is increasing the
probability of the co-occurring warm–dry conditions that have
created the current California drought.
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